quinta-feira, 18 de junho de 2015

The amazing organisation and design  of DNA, genomes, histones, nucleosomes and chromosomes

DNA, as a very stable nano-molecule. It is an formidable, ideal massive storage device for long-term data archive. 22 The organisation of this higher order structure of chromosomes and respective substructures is awe inspiring when looking closer at its features and functionality. DNA nanotechnology tries to mimic its capabilities since this type of storage system is more compact than current magnetic tape or hard drive storage systems due to the data density of the DNA. For example, DNA stores the information to make over 100.000 different types of proteins in the human body, each with a unique function. We think that we have done very well with human technology, packing information very densely on to computer hard drives, chips and CD-ROM disks. However, these all store information on the surface, whereas DNA stores it in three dimensions. It is by far the densest information storage mechanism known in the universe.

Let's look at the amount of information that could be contained in a pinhead volume of DNA. If all this information were written into paperback books, it would make a pile of such books 500 times higher than from here to the moon! The design of such an incredible system of information storage indicates a vastly intelligent Designer. A paper , published in Nature, reports that "existing technologies for copying DNA are highly efficient," this makes DNA an "excellent medium for the creation of copies of any archive for transportation, sharing or security." The authors conclude that "DNA-based storage has potential as a practical solution to the digital archiving problem and may become a cost-effective solution for rarely accessed archives." 1

In Alberts book molecular biology of the Cell, we read : The structure and chemical properties of DNA make it ideally suited as the raw material of genes. The packing has to be done in an orderly fashion so that the chromosomes can be replicated and apportioned correctly between the two daughter cells at each cell division. We also confront the serious challenge of DNA packaging. Each human cell contains approximately 2 meters of DNA if stretched end-to-end; yet the nucleus of a human cell, which contains the DNA, is only about 6 μm in diameter. This is geometrically equivalent to packing 40 km (24 miles) of extremely fine thread into a tennis ball! The complex task of packaging DNA is accomplished by specialized proteins that bind to and fold the DNA, generating a series of coils and loops that provide increasingly higher levels of organization, preventing the DNA from becoming an unmanageable tangle. Amazingly, although the DNA is very tightly folded, it is compacted in a way that allows it to easily become available to the many enzymes in the cell that replicate it, repair it, and use its genes to produce proteins.

Packing ratio - the length of DNA divided by the length into which it is packaged

For example, the shortest human chromosome contains 4.6 x 107 bp of DNA (about 10 times the genome size of E. coli). This is equivalent to 14,000 µm of extended DNA. In its most condensed state during mitosis, the chromosome is about 2 µm long. This gives a packing ratio of 7000 (14,000/2).

To achieve the overall packing ratio, DNA is not packaged directly into final structure of chromatin. Instead, it contains several hierarchies of organization. The first level of packing is achieved by the winding of DNA around a protein core to produce a "bead-like" structure called a nucleosome. This gives a packing ratio of about 6. This structure is invariant in both the euchromatin and heterochromatin of all chromosomes. The second level of packing is the coiling of beads in a helical structure called the 30 nm fiber that is found in both interphase chromatin and mitotic chromosomes. This structure increases the packing ratio to about 40. The final packaging occurs when the fiber is organized in loops, scaffolds and domains that give a final packing ratio of about 1000 in interphase chromosomes and about 10,000 in mitotic chromosomes.

In Wikipedia we read in this regard : DNA has a striking property to pack itself in the appropriate solution conditions with the help of ions and other molecules. Usually, DNA condensation is defined as "the collapse of extended DNA chains into compact, orderly particles containing only one or a few molecules" 4

Furthermore: Without histones, the unwound DNA in chromosomes would be very long (a length to width ratio of more than 10 million to 1 in human DNA). For example, each human cell has about 1.8 meters of DNA, (~6 ft) but wound on the histones it has about 90 micrometers (0.09 mm) of chromatin, which, when duplicated and condensed during mitosis, result in about 120 micrometers of chromosomes

This is a amazing example of extraordinary design, unparalleled by human intelligence. Question: Is it not unlikely that natural processes could achieve this feat to condense DNA into such a enormously tiny , highly regulated and functional structure ? Why at all should it happen ?

Dr. Stephen C. Meyer in his 1996 essay The Origin of Life and the Death of Materialism, wrote that
"the information storage density of DNA, thanks in part to nucleosome spooling, is several trillion times that of our most advanced computer chips

How could undirected natural processes have produced the most advanced storage system known in the universe ? Evolution is not not a explanation, since its depends on this very own storage system in order for natural selection to occur.

Eukaryotic chromosomes consist of a DNA-protein complex that is organized in a compact manner which permits the large amount of DNA to be stored in the nucleus of the cell. The subunit designation of the chromosome is chromatin. The fundamental unit of chromatin is the nucleosome.

Everything in the cell is organized and in its expected place and function. Nothing in the cell is left to chance. The nucleus is no exception. In fact, in some ways, the nucleus is more organized and complex than the rest of the cell. One aspect of the complexity and organization of the nucleus is the chromatin. 3

Furthermore, in following paper, Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information, we find a true mind blower, showing the irreducible organizational complexity (author’s description) of DNA analog and digital information, that genes are not arbitrarily positioned on the chromosome etc. 5

The paper argues that cellular mechanisms involved in processing genetic information make up an irreducibly complex system. The system requires genetic information, genetic machinery keyed to read that genetic information, as well as specific chromosomal organization. All of these components are necessary for what the paper calls "the organisational complexity of the genetic regulation system."

To be precise, the paper uses the term "irreducible organization" but it amounts to the same thing as biochemist Michael Behe's "irreducible complexity," and points implicitly to the same challenge to Darwinian accounts of origins.

1) the authors are “serious” scientists, not fringe people
2) They are using “irreducible complexity” in the same sense as Behe. This is not a case of accidental use of the same phrase to mean something different. Their term “holistic” is another way of saying the same thing, that the system requires all of its parts to work.
3) This “holistic” approach is one that is becoming common in systems biology.

1) http://www.nature.com/nature/journal/v494/n7435/full/nature11875.html
2) http://www.ndsu.edu/pubweb/~mcclean/plsc431/eukarychrom/eukaryo3.htm
3) http://creationrevolution.com/chromatin-%E2%80%93-simple-cell-part-18/
4) https://en.wikipedia.org/wiki/DNA_condensation
5) http://www.evolutionnews.org/2013/10/paper_irreducib077761.html

more:  http://elshamah.heavenforum.org/t2017-the-amazing-organisation-and-design-of-dna-genomes-histones-nucleosomes-chromosomes#3392

Nenhum comentário:

Postar um comentário